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Lecture I: String Theory via Strong Interactions

1. The origin of String Theory

There is an intimate but rather controversial relationship between strong
interactions and string theory. As well-known, the birth of string theory
comes from the observation of many puzzling features of strong interaction
scattering amplitudes from the phenomenological point of view. In a modern
language, we call them “soft” reactions since they involve small-pT hadrons,
and thus a strong coupling constant αs(pT ) = O(1) or more preventing one
from using known perturbative techniques of field theory.

It took more or less six years, from 1968 to 1974 starting from the formu-
lation of the Veneziano amplitude, to obtain a first consistent formulation
of the underlying string theoretical framework. Strangely enough, it is at
the very same time, in 1974, that Quantum Field Theory in the form of
Quantum Chromodynamics (QCD), started to be identified as the correct
microscopic theoretical fundation of strong interactions in terms of quarks
and gluons. In fact, it has already been realized that the construction of
string theory in the physical 3+1-dimensional Minkowski space has led to nu-
merous difficulties and inconsistencies with the observed features of strong
interactions.

It is well-known that starting from that period, string theory and QCD
studies followed divergent paths, the former being promoted after 1983 to
a serious candidate for the unification of fundamental forces and quantum
gravity and the second showing more and more ability to describe the fea-
tures of quark and gluon interactions at high energy with unprecedenting
accuracy.

Now, the divorce could have been complete and definitive, when in 1997
appeared a new historical twist with the conjecture named “AdS/CFT cor-
respondence” and its various generalizations and developments involving
a new duality relation between gauge theories and gravitational interac-
tions in an higher-dimensional space. Interestingly, some of the major
drawbacks found previously for applying string theory to strongly inter-
acting gauge fields have been avoided and a new formulation of gauge field
theory at strong coupling emerged. Since 1997, the developments of the
Gauge/Gravity correspondence are numerous.

Many of these new developments are not directly connected to QCD,
which indeed does not admit for the moment a correct dual formulation.
However, they open the way for new tools for computing amplitudes and
other observables of gauge field theories in terms of their gravity dual. One
very promising aspect of this connection concerns the formation of a Quark-
Gluon Plasma (QGP) in heavy-ion reactions. Indeed, the phenomenological
features coming from the experiments at RHIC point to the formation of a
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strongly coupled plasma of gauge fields which appeared to give a stimulat-
ing testing ground for the Gauge/Gravity correspondence and its physical
relevance for QCD and particle physics.

Our aim in these lectures is to provide one possible introduction to
those aspects of the construction of string theory and its applications,
mainly the AdS/CFT correspondence, which could be of interest for the stu-
dents in QCD and QGP phenomenology. The presentation is thus “strong-
interaction oriented”, with both reasons that it uses as much as possible the
particle language, and that the speaker is more appropriately considered as
a particle physicist than a string theorist. In this respect he is deeply grate-
ful to his string theorists friends and collaborators, in first place Romuald
Janik, for their help in many subtile and often technical aspects of string
theory. In this respect, it is quite stimulating to take part in casting a new
bridge between “particles and strings”.

2. The Veneziano Formula and Dual Resonance Models

Shapiro-Virasoro AmplitudeVeneziano Amplitude

{q^2

A  (s,q^2) A  (s,q^2)R P

s{

Fig. 1. “Duality Diagrams” representing the Veneziano and Shapiro-Virasoro am-

plitudes. The hatched surface gives a representation of the string worldsheet of the

process. s (resp. q2) are the square of the c.o.m. energy (resp. momentum trans-

fer) of the 2-body scattering amplitude. AR(s, q2) is, at high energy, the Reggeon

amplitude; AP (s, q2) is the Pomeron amplitude, see text.

The Veneziano amplitude was the effective starting point of string the-
ory, even if it took some years to fully realize the connection. At first the
Veneziano amplitude was proposed as a way to formulate mathematically
an amplitude which could describe a troubling phenomenological feature of
two-body hadron-hadron reactions; the “Resonance-Reggeon” duality. In-
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deed, the prominent feature in the low-energy domain of two-body hadron-
hadron reactions is the presence of numerous hadronic resonances, such that
in some channels one can even describe the whole amplitude as a superposi-
tion of resonances. At high-energy, the two-body hadron-hadron reactions
can also be described by the combination of amplitudes corresponding to
the exchange in the crossed channel (q2 channel in Fig.1) of particles and
resonances, under the form of Regge poles which correspond to an analytic
continuation in the spin variable.

The term “duality” has been introduced to characterize the fact that
one should not describe the amplitude by adding the two kinds of descrip-
tion. On the contrary, one expects an equivalent description in terms of a
superposition of resonance states and as a superposition of Reggeon contri-
butions. In order to represent this feature, “duality diagrams” have been
proposed, as shown in Fig.1, where the 2-dimensional surface is drawn to
describe the summation over states in the direct channel (s-channel reso-
nances, whre s is the square of the total energy) as well in the exchanged
one (t-channel reggeons where t = −q2 is the analytic continuation of the
square of the total energy in the crossed channel). In terms of strings, it
will correspond to the string worldsheet associated to the amplitudes.

The phenomenological constructions which were proposed to formulate
this property are called the “Dual Resonance Models”. As we shall see fur-
ther, this qualitative representation will be promoted to a rigorous meaning
in terms of string propagation and interaction. Note already that a topolog-
ical feature emerges from the diagrams of Fig.1, since they are characterized
by a planar topology (Reggeon exchange) or a sphere topology (Pomeron
exchange), with “punctures” corresponding to the ingoing and outgoing
states. This topological features are indeed a basic feature of string the-
ory, corresponding to the invariance of the string amplitudes w.r.t. the
parametrization of the surface spanned by the string.

[Exercise 2.1: Show that the “Shapiro-Virasoro diagram” is
topologically equivalent to sticking two “Veneziano diagrams” to-
gether in a specific way, i.e. with a “twist”]

The first and pioneering step in the theoretical approach to dual reso-
nance models is the proposal by Veneziano of a mathematical realization
of the dual amplitude corresponding to the planar topology (Reggeon ex-
change) the well-known “Veneziano Amplitude”. In its simplest version it
reads:

AR(s, t) =
Γ(−α(s)) Γ(−α(t))

Γ(−α(s) − α(t))
(1)
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with t ≡ −q2 and linear “Regge trajectories”

α(m2) = α(0) + α′m2 . (2)

The Veneziano amplitude has quite remarkable features, thanks to the prop-
erties of the Gamma function, which give an explicit realization of the du-
ality properties. Indeed, in the s-channel as well as in the t-channel, it
corresponds to an infinite series of poles (and thus of states), but with a
finite number of spins for each value of positive integer “level” α(m2) = n,
since

α(s or t) → n ∈ N ⇒ Γ(−α(s))Γ(−α(t))

Γ(−α(s) − α(t))
≈

≈ Polynomial{degree≤n} (t or s)

(n − α(s or t))
. (3)

[Exercise 2.2: prove formula (3) from Gamma function properties]

Concerning the high-energy behaviour, one obtains

s → ∞ ⇒ AR(s, t) =
Γ(−α(s)) Γ(−α(t))

Γ(−α(s) − α(t))
≈ sα(t) Γ(−α(t)) , (4)

which is the typical dominant “Regge behaviour”, phenomenologically ob-
served in hadron-hadron reactions, where the high-energy amplitude in the
s-channel corresponds to the dominant Regge trajectory (higher spin for
a given mass) in the crossed channels. Subdominant terms correspond to
secondary linear regge trajectories. A similar approach was proposed for
the sphere topology (the “Pomeron exchange”), resulting in the Shapiro-
Virasoro amplitude AP(s, t).

[Exercise 2.3: prove formula (4) from Gamma function prop-
erties]

For phenomenological purpose, despite its remarkable properties, the
Veneziano amplitude is not the full answer. Among other problems, all
poles are on the real s or t axis, and thus they correspond to unphysical
stable states and not resonances. In the following we shall focus on the
theoretical meaning of the Veneziano amplitude as the seed for string theory.
As we shall see, a rigorous connection between the Veneziano amplitude and
strong interaction physics which was its initial motivation, required a more
sophisticated framework.
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3. From Dual Amplitudes to Strings

(σ,τ)X d−Space

σ
τ

Fig. 2. String apparatus. Left: the 2-dimensional (σ, τ) string worldsheet. Right:

the string embedding in the target space (here: flat d-dimensional space). Xµ(σ, τ)

is the string position operator, see text.

As clear from formula (3), the Veneziano amplitude corresponds to an
infinitely growing number of states as a function of the level (n = α(m2

n)).
Such a spectrum is reminiscent of the classical oscillatory modes of a string.
However, the construction of a quantum theory of strings and the identifica-
tion of the Veneziano amplitude as a particular string interaction amplitude
took some time. In the following we will give the structure of the quantum
position operator for a (bosonic) string and sketch the derivation of the
Veneziano amplitude as the tree-level string interaction amplitude.

In order to describe the degrees of freedom of a relativistic string, it is
useful to introduce the following set of bosonic operators:

[an,µ, a−m,ν ] = ηµν δnm; [q̂µ, p̂ν ] = iηµν , (5)

where one considers for the target space, see Fig.2, the d-dimensional flat
metrics

µ, ν ⇒ ηµν =
{

1,−1;−1∗[d−2]
}

. (6)

In (5), the operators q̂, p̂ describe the momentum and position of the string
center of mass, while a, a† are the bosonic annihilation and creation opera-
tors describing the oscillator modes of the string. Using these definition, one
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builds the string position operator at the boundary Xµ(τ, σ = 0) as follows

Xµ(σ = 0, τ) ≡ Qµ(z) = Q(+)
µ (z) + Q(0)

µ (z) + Q(−)
µ (z) ; z = eiτ , (7)

with

Q(+) = i
√

2α′

∞
∑

n=1

an√
n

z−n ; Q(−) =−i
√

2α′

∞
∑

n=1

a−n√
n

zn ; Q(0) = q̂−2iα′p̂ log z .

(8)
The σ-dependence is restored, specifying the boundary conditions of the
open string, by multiplying each term a±n/

√
n z∓n in (8) by cos nσ.

The calculation of the amplitude is made by integration over the world-

sheet variables of an overlap over plane wave operators A ∝
〈

∏

j eipjXj

〉

σ,τ
.

Introducing the normal ordered vertex operators

V (p; z) ≡: eip·Q(z) := eip·Q(−)
eip·q̂ e2α′p·p̂ eip·Q(+)

, (9)

the Veneziano amplitude B4(p1 +p2 → p3 +p4) in terms of string vertex
operators reads:

(2π)dδ(d)(

4
∑

i=1

pi) B4 =

∫ 1

0
dz3 〈0, p1|V (p2; z2 =1)V (p3; z3)|0, p4〉 , (10)

where the external states are

〈0, p1| ∝ 〈0, 0|V (p1; z1→∞) |0, p4〉 ∝ V (p4; z4→0)|0, 0〉 (11)

and wjhere |0, 0〉 denotes the vacuum state. The harmonic oscillators acting
on this state build the Hilbert space of the string states. The fact that 3 over
the 4 zi coordinates can be fixed at will comes from the string symmetries
which will be discussed in the next section.

Using the definition (9) together with the relation

V (pi; zi)V (pj ; zj) =: V (pi; zi)V (pj ; zj) : (zi − zj)
2α′pi·.pj (12)

one finally finds

B4=

∫ 1

0
dz z−1−α(s)(1−z)−1−α(t)=

Γ(−α(s))Γ(−α(t))

Γ(−α(s)−α(t))
(13)

which is nothing else han the Veneziano amplitude. An important step
towards the construction of string theory was made when the suitable gen-
eralization to arbitrary number of legs B4 → BN has been performed. The
operator formalism was then found and fully confirmed.



school˙proceedings˙7 printed on April 8, 2008 9

[Exercise 3.1: prove formula (12) from relations (5,8), using
the Baker-Hausdorff formula eAeB = eBeAe[A,B] if [A,B] is scalar]

[Exercise 3.2: prove formula (13) from (10-12)]

4. String Symmetries

The symmetries play a crucial role in the properties of string theory.
Let us discuss the main features of string symmetries. There exists an
exact symmetry group on the string worldsheet. It contains, respectively,
dilatation, translation and inversion in the worldsheet variable z ≡ eiτ , with
generators

z
d

dz
,

d

dz
, −z2 d

dz
,

respectively. These transformations correspond to the infinitesimal genera-
tors (the algebra) of the Projective (conformal) invariance group SU(1, 1)
(its algebra of generators is given further on, see (18)). It is precisely this
SU(1, 1) invariance with 3 generators, which allows one to arbitrarily fix 3
among N values of the worldsheet variables in the expression of the ampli-
tude BN , e.g. leaving one interation for the Veneziano amplitude (13).

By extension, one also introduces the generalized conformal transforms
zn+1 d

dz , for all n, which however will not form an exact symmetry algebra
at the quantum level, as we will discuss now. They will give rise to the
famous V irasoro Algebra with a “central extension” or quantum anomaly.

As usual in the formulation of symmetries, a key point is to find an
appropriate representation of the algebra in terms of physically meaningful
objects, here the annihilation and creation operators describing the string.
For this sake one forms the following operators

Ln =
√

2α′n p̂ · an+

∞
∑

m=1

√

m(n+m) an+m · am+
1

2

n−1
∑

m=1

√

m(n−m) am−n ·am

(14)
which possess nice algebraic properties, when acting on the string position
operator (7).

Let us first consider the set of operators (L0, L−1, L1). One can prove
that

[L0, Q(z)] = −z
dQ

dz
; [L−1, Q(z)] = −dQ

dz
; [L1, Q(z)] = −z2 dQ

dz
,

(15)
which demonstrate that they form an adequate representation of the algebra
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of the projective symmetry group SU(1, 1). More generally one finds

[Ln, Q(z)] = −zn+1 dQ

dz
, (16)

and thus a representation of the generalized projective transformations on
the string position operator and thus on the string states.

[Exercise 4.1: prove formulae (15) (and its generalization (16)
using (14) and the commutation relations (5)]

Now the symmetry properties will come from the commutation relations
between the Ln generators, i.e. the Virasoro Algebra. One finds

[Ln, Lm] = (n − m)Ln+m +
d

24
n(n2 − 1)δn+m,0 . (17)

[Exercise 4.2: prove formula (17), starting with the simpler
cases when n = 0,±1.]

The formula (17) calls for comments. From the algebra, it is easy to
note that, restricting (17) to n = 0,±1, one finds

[L±1, L0] = ±L±1 ; [L1, L−1] = 2L0 (18)

which is the algebra of generators of the SU(1, 1) group (analoguous to
SU(2) and its generators L±, Lz, but with a change of sign in the [L−1, L0]
relation which is related to the non-compactness of the group). Hence this
subalgebra indicates the exact symmetry under projective transforms.

For higher |n| > 1, one notes the extra contribution d
24n(n2 − 1)δn+m,0,

which is proportional to the target space dimension d. The “central charge”
( d
12 with the conventional normalization) is a fundamental contribution,

showing that the generalized projective group is not an exact symmetry
(unless other contributions cancel the central charge due to the dimension,
which is precisely the condition for the existence of a consistent string the-
ory). It will in fact be crucial in the striking feature of string theory to
imply a constraint on the target space, i.e. the space in which it moves!

5. Why 26 (or 10) Dimensions?

Now we have the tools to understand the old puzzle which has jeop-
ardized the initial strong-interactions/strings connection. The question is
whether one can construct 4-dimensional string amplitudes in Minkowski
space and the answer is in fact “no”. Let us list the problems when facing
the construction of 4-d strings in a theoretically consistent way. One finds
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• Open (resp. closed) strings ⇒ Gauge (resp. Gravity) at lower energy
• Zero-mass asymptotic states: gauge bosons, gravitons
• Hadron spectrum not compatible
• QCD not obtained
• Problem of dimensions: The Minkowskian string (resp. superstring)

target-space is 26 (resp. 10) dimensional

[Exercise 5.1: Given the ρ (spin 1, Mass 770 MeV) and f2 (spin
2, mass 1270 MeV) mesons which are on the dominant hadronic
Reggeon trajectory and the fact that total hadronic cross-sections
are constant with energy (up to logarithms) illustrate the third
point of the list]

Let us consider the problem of dimensions as a major illustration of the
deep implications of quantum consistency and symmetries of string theory
based on the Virasoro Algebra.

The problem can be viewed in different ways. Here we shall take the
point of view of the construction of an Hilbert space made of positive
norm particle states. Let us first remind the well-known construction of
the Hilbert space for QED.

If one considers the oscillator construction of the QED Hilbert space one
is led to satisfy, choosing the covariant gauge, the condition

qµa†µ|0〉 = 0 ,

where qµa†µ denotes the QED analogue (indeed ancestor) of the creation
L-operator L1. As is known from QED quantification, one may classify the

four vector states a†µ|0〉 within three categories, namely

a†T |0〉 = |φT 〉 Transverse photon states
∑

|φ2,3〉|2 = 1

a†0 − a†1|0〉 = |l〉 Longitudinal photon state 〈l|l〉 = 0

a†0 + a†1|0〉 = |s〉 Spurious photon state qµa†µ 6= 0 .

In a similar way for strings, and now for the whole hierarchy of operators
Ln, one considers the following (covariant) gauge conditions

Ln|φstring〉 = 0 for n > 0 , (19)

which allows a similar generalized classification of states

Ln|φstring〉 = 0 On−shell states positive Norm

〈lstring|lstring〉 = 0 Of−shell states Zero−Norm

Ln|sstring〉 6= 0 Spurious states Unphysical States .
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Now, the key point for the construction of a consistent Hilbert space of
string states is that spurious states decouple from the other ones. Building
a simple example we shall prove that it implies a necessary condition over
the target space dimension. For simplicity, we shall not enter in the proof
that this is a sufficient condition for eliminating all spurious states from the
spectrum.

Let us consider the following spurious state:

|sstring〉 = L−1|φ1〉 + L−2|φ2〉 . (20)

[Exercise 5.2: prove that the state defined by formula (20) is
indeed spurious if the states φ1,2 are physical on-shell states]

Then acting on |sstring〉 with an appropriate combination of Loperators,
one finds

{

L2 +
3

2
L1L1

}

|sstring〉 =
∑

i

|sstring, i〉 +
d−26

2
|φstring〉 (21)

[Exercise 5.3: prove Equation (21) by inserting the state (20)
using the Virasoro algebra relation [L2, L−2] = 4L0 + d

4 and classi-
fying the obtained states using (20)]

The decoupling of spurious states requires that the subspace of spurious
states should remain orthogonal from the physical spaces. Hence one gets
the condition d = 24, characteristic of the bosonic string consistency. A
similar condition applies to the supersymmetric versions of string theory in
Minkowskian space, leading to d = 10. The decoupling of non-physical states
is thus directly a consequence of the Virasoro Algebra and more specifically
of its central charge properties.
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Lecture II: Gauge/Gravity correspondence

6. An Open-Closed String connection

We have discussed in section 5 the drawbacks of the initial attempts
to obtain strong interaction physics from string theory. Indeed, on the
string-theoretical point of view, the dimensionality of a Minkowskian target
space (26 or 10), the existence of zero mass states and their connection to
gauge field theory and gravity, among other features, seemed to invalidate
a string description of hadronic interactions. On the field-theoretical point
of view, based on the existence of a satisfactory theoretical understanding
of quark and gluon interactions at weak coupling in terms of Quantum
Chromodynamics, the challenge of a correct description of interactions at
long distance relies on the still unsolved problem of computing observables
at strong coupling. As we shall see now the Gauge/Gravity duality, a deep
“geometrical” property of string amplitudes, and its precise formulation in
the case of the so-called AdS/CFT correspondence, seem to overcome at
least in principle, the difficulties from both string and field theory sides and
opens a new way for the string approach to strong interactions.

Let us first give a quite general argument, giving a qualitative explana-
tion of this new way of approaching the problem. It relies on a connection
between open and closed strings which is displayed on Fig.3. We consider
the configuration of two stacks of D-branes in the 10-dimensional target
space of a superstring theory. The D-branes are subdimensional manifolds
which form a consistent background in the string-theoretical framework. In
particular, they are the locus of open string endpoints. In Fig.3 they are
understood as stacks of D3 branes which are two sets of copies of the 3 + 1
Minkowski space, separated by a distance r in a fifth dimension, which will
play a special role in the following.

One can geometrically interpret the cylinder shape of the interaction in
two equivalent ways: i) It may be seen as the propagation of a closed loop,
starting on one D3 brane-stack and reaching the second one; ii) It may be
seen alternatively as a one-loop contribution from open-strings since open
strings may have end-points on D3 branes. This equivalence, once given a
precise formulation in terms of a specific string theory, has quite intringuing
and far-reaching consequences.

Let us list some of them:
• Gauge/Gravity duality. As we have alluded to in section 5 the massless

modes of the string states are gauge fields for the open strings and gravitons
for the closed strings. Hence the interaction amplitude depicted in Fig3
potentially identifies a tree-level gravitational interaction with a gauge one
at one-loop.

• Short/Long distance relationship. When considered at long 5th dimen-
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Fig. 3. Open ⇔ Closed duality and D-Branes. Left: Cylinder topology describing

a string interaction between two stacks of D-branes; Right: the interaction can be

described either by the exchange of a closed string propagating between the two

stacks of branes or by the one-loop contribution of an open string attached to the

two stacks (from reference [10]).

sional distance r in the 5th dimension, the closed string exchange is expected
to be described by a classical, weakly coupled, gravitational interaction. By
contrast, at small distance, the open string interaction is well-described by
the exchange of its zero-mode states, that is the gauge vector fields. This is
theoretically justified, since the exchange of open strings with multiple com-
binations of open-string end-points between stacks of near-by D3 branes, are
related at weak string coupling to generic SU(N) gauge field theories (see
Fig.4).

• Weak/Strong coupling relationship. At short distance r, the SU(N)
gauge coupling is weak (due to asymptotic freedom for N ≥ 2). By contrast,
the gravitational interaction is expected to become strong since the stacks of
D3 branes are some kind of very massive objets and are expected to generate
a strong gravitational field in their neighbourhood. On the other end of the
comparison, at long distance r, the gravity is weak, while the open string
interaction is expected to become strongly coupled, and moreover, all the
excitations of the open strings which correspond to the massive oscillator
modes are expected to contribute.

From that comes the main feature of the Gauge/Gravity duality; It
makes a deep connection between weak coupling on one side of the cor-
respondence to the strong coupling regime of the other side. It is thus
intrinsically a weak/strong coupling duality.

In the present series of lectures, we are interested in the weak grav-
ity/strong gauge coupling combination (the investigation of the weak gauge/strong
gravity duality is yet another fascinating challenge). Obtaining valuable new
tools of investigation of gauge theories at strong coupling from their gravity
duals at weak coupling, and thus accessible to a quantitative approach.
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7. The AdS/CFT correspondence

Fig. 4. SU(N) Gauge theory from D3 branes. The D3 branes are considered to be

practically at the same location in 10-dimensional space. The (short) open string

combination of end-points leads to the adjoint representation of SU(N).

The AdS/CFT correspondence has many interesting both formal and
physical facets. Concerning the aspects which are of interest for our prob-
lem, it allows one to find relations between gauge field theories at strong
coupling and string gravity at weak coupling in the limit of large number
of colours (Nc→∞). It can be examined quite precisely in the AdS5/CFT4

case where CFT4 is the 4-dimensional conformal field theory corresponding
to the SU(N) gauge theory with N =4 supersymmetries.

[Exercise 6.1: How many gauge bosons are expected in Fig.4?]

Some existing extensions to other gauge theories with broken conformal
symmetry and less or no supersymmetries will be valuable for our approach,
since they lead to confining gauge theories which are more similar to QCD.
Note that the appropriate string gravity dual of QCD has not yet been
identified, and thus we are forced to restrict for the moment our use of
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AdS/CFT correspondence to generic features of confining theories duals,
see a discussion further on in this section.

Let us recall the canonical derivation leading to the AdS5 background
see Fig.5. One starts from the (super)gravity classical solution of a system
of N D3-branes in a 10−D space of the (type IIB) superstrings. The metrics
solution of the (super)Einstein equations read

ds2 = f−1/2(−dt2+
∑

1−3

dx2
i )+f1/2(dr2+r2dΩ5) , (22)

where the first four coordinates are on the brane and r corresponds to the
coordinate along the normal to the branes. In formula (22), one writes

f = 1 +
R4

r4
; R = 4πg2

Y Mα′2N , (23)

where g2
Y MN is the so-called ‘t Hooft-Yang-Mills coupling equal to the string

coupling gs and α′ the string tension.
One considers the limiting behaviour considered by Maldacena, where

one zooms on the neighbourhood of the branes while in the same time going
to the limit of weak string slope α′. The near-by space-time is thus distorted
due to the (super) gravitational field of the branes. One goes to the limit
where

R fixed ;
α′(→ 0)

r(→ 0)
→ z fixed . (24)

This, from the second equation of (23) obviously implies

α′ → 0 , g2
Y MN ∼ R

4πα′2
→ ∞ , (25)

i.e. both a weak coupling limit for the string theory and a strong coupling
limit for the dual gauge field theory. By reorganizing the two parts of the
metrics one obtains

ds2 =
1

z2
(−dt2 +

3
∑

1

dx2
i + dz2) + R2dΩ5 , (26)

which corresponds to the AdS5 × S5 background structure. In (26) 1
z2 (−dt2+

∑

1−3 dx2
i + dz2), describes a Anti de Sitter1 geometrical space which is a

5-dimensional hyperbolöıd of equation −x2
0 − x2

1 +
∑6

i=2 x2
i = −R2 in a 6-

dimensional flat Minkowski space S5 is the 5-sphere of metric R2dΩ5 where

1 the 5-d version of de Sitter geometrical space, whose 4-d version appears in general

relativity, has a plus sign, i.e. obeys the equation −x2
0 + x2

1 +
P6

i=2 x2
i = R2..
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5+1
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AdS CFT

Microscopic

}
Gravity Source

}

N-Branes

55
AdS x S Superstring SU(N) Gauge Theory on the N-Branes

Duality

Fig. 5. Sketch of the AdS5/CFT4 correspondence. Left: At long distance, the

gravity source of the branes generate an Anti de Sitter background metric; Right:

At short distance, the open strings on the branes boil down to a non-abelian SU(N)

gauge field theory with N = 4 supersymmetries.

Ω5 is the 5-dimensional solid angle. More detailed analysis shows that the
isometry group of the 5-sphere may be considered as the “gravity dual” of
the N = 4 supersymmetries (for completion, the quantum number dual to
Nc, the number of colours, is the invariant charge carried by a Ramond-
Ramond form field in (type IIB) superstrings.

In the case of confining backgrounds, an intrinsic scale breaks conformal
invariance and is brought in the dual theory through e.g. a geometrical
constraint. For instance, a confining gauge theory is expected to be dual to
string theory in an AdSBH Black Hole (BH) background

ds2
BH =

16

9

1

f(z)

dz2

z2
+

ηµνdxµdxν

z2
+ . . . (27)
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where f(z) = z2/3[1 − (z/R0)
4] and R0 is the position of the BH horizon.

One may use this type of background to study the interplay between the
confining nature of gauge theory and its reggeization properties. Actually
the qualitative arguments and approximations should be generic for most
confining backgrounds. For instance, other geometries for (supersymmet-
ric) confining theories have been discussed in this respect. They have the
property that for small z, the geometry looks like AdS5 × S5 (in up to log-
arithmic corrections related to asymptotic freedom) giving a coulombic qq̄
potential. For large z the geometry is effectively flat. In all cases there is
a scale, similar to R0 above, which marks a transition between the small z
and large z regimes.

8. Wilson Loops, Minimal Surfaces and Confinement

We will find appropriate in the next section to formulate the scattering
amplitudes in terms of Wilson loops, since the Gauge/Gravity “dictionnary”
for Wilson loops has been proved to be well suitable for dual properties in
general. Let us thus introduce this dictionnary in the following. Let us
introduce the general framework within which Wilson loops in the “bound-
ary” gauge field theory are in correspondence with minimal surfaces in the
“bulk”.

In a framework suitable for performing the AdS/CFT correspondence,
quarks (resp. antiquarks) can be represented2 by colour sources in the
fundamental (resp. anti fundamental) reps. of SU(N). In order to illustrate
the way one may formulate in practice the AdS/CFT correspondence in
a context similar to QCD, let us consider first the example of the vacuum
expectation value (vev) of Wilson loops in a configuration parallel to the time
direction of the branes. we consider the large time limit and thus the loops
close “near” infinity in the time direction (see Fig.6). This configuration
allows a determination of the potential between colour charges. The rôle
of colour charges is played by open string states elongated between a stack
of Nc D3 branes on one side and one D3 brane near the boundary of AdS
space.

The correspondence can be formulated3 as follows

〈 eiP
R

C
~A·~dl 〉 =

∫

Σ
e−

Area(Σ)

α′ , (28)

where C is the Wilson loop contour near the D3 branes and Σ any surface
in AdS-space with C as the boundary, see Fig.6.

2 In order to get correct quark degrees of freedom, e.g. flavor, a more complete geo-

metrical set-up including D7 branes is used.
3 For simplicity, an extra singlet term in the left-hand exponent, allowing to cancel

divergences, is not written here.
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HORIZON

Boundary

Fig. 6. Sketch of minimal surfaces with Wilson loop boundaries: the potential con-

figuration. The Wilson loops correspond here to the potential configuration with

transverse boundaries at distance L and parallel time-like boundaries going to in-

finity at the limit, see text. Left: Minimal surface in the presence of a confining

background such as (27); Right: Minimal surface corresponding to an AdS5-like

background such as (26). NB: In the figure, it is represented in an approximate case

when the ratio of the Wilson loop transverse size to the horizon is small. Without

horizon, the minimal surface at large transverse size would extend without limit.

In the semi-classical approximation for the right-hand (gravity) side of
the relation (28) where the Gauge/Gravity correspondence would give the
strong coupling value of the left-hand (gauge) side, the integration over
surfaces Σ which boils down to

〈 eiP
R

C
~A·~dl 〉 ≈ e−

Areamin
α′ × Fluct. , (29)

where Areamin is the minimal surface whose boundary is the gauge-theory
Wilson loop. The factor denoted Fluct. refers to the fluctuation determinant
around the minimal surface, corresponding to the first quantum correction
beyond the classical approximation. It gives an interesting calculable semi-
classical correction, as we shall see on the amplitude exemple.

In Fig.6, we have sketched the form of minimal surface solutions for the
“confining” AdSBH case, (see above (27)). For large separation of Wilson
lines, the minimal surface is bounded near the horizon and is consequently
curved. At smaller separation, the solution becomes again similar to the
conformal case, since the horizon cut-off does not play a big rôle.

In gauge theory, the quark-quark potential is known to be obtained from
a suitable time-like infinite limit of the rectangular Wilson loop vev. One
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has

V (L) = lim
T→∞

1

T
× log〈 Wilson Loop 〉 (30)

Thanks to the Gauge/Gravity correspondence (28) and the classical approx-
imation (29), one is able to get the strong coupling limit of the interquark
potential from the large time limit of the Wilson loop v.e.v.:

AdS5 : 〈Wilson Loop〉 = eTV (L) ∼ e#1

√
g2

Y MN T
L

AdSBH : 〈Wilson Loop〉 = eTV (L) ∼ e
#2

TL

R2
0 ,

where #1,2 are constants. The potential behaviour obeys the nonconfining
Coulomb law V (L) ∝ 1/L for the AdS case and the confining law V (L) ∝ L
for the AdSBH case. An interesting nonanalytic dependence over the square-
root coupling appears. Note again that, even in the case of a confining
geometry with an horizon at R0, Wilson lines separated by a distance L <<
R0 do not give rise to minimal surfaces sensitive to the horizon (see Fig.3),
and thus to classical solutions similar to the non-confining case, which can
give interesting indications for small spatial separation.

The important rôle of fluctuation corrections and the way of computing
it in some non-trivial cases will be discussed further on.

9. Application: A dual model for Dipole Amplitudes

Now we will come back to our original problem of describing in a consis-
tent way the strong interaction two-body amplitudes which correspond, e.g.
to the processes depicted in fig.1. There are different approaches to scat-
tering amplitudes using gravity duals, including recently the formulation of
gluon amplitudes at strong coupling in the SU(N) gauge theory with N =4
supersymmetries. However, since we are interested in the present lecture in
the approach to hadronic scattering amplitudes, one is led to search for both
a field-theoretical formulation based on QCD and the determination of the
gravity duals of the corresponding amplitudes. Concerning the nature of
the dual theory, the gravity dual theory of QCD has not yet been identified.
More generally, the problem of deriving a correspondence for a confining
theory with asymptotic freedom is not yet achieved. In the following we
shall use an approach where only generic features of confining backgrounds
allow to determine some properties of the amplitudes. The price we pay is
that we will only be able to discuss the high-energy behaviour of the am-
plitudes, i.e. the high-energy regime, which was discussed in section 2 for
instance in Eq.(4). Other properties of the amplitudes will not be discussed,
and probably are more difficult to derive in the absence of a better deter-
mined dual background to QCD. Using the AdS/CFT correspondence, we
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Fig. 7. Wilson loops for Dipole-Dipole scattering in configuration space. The figure

is drawn in the physical boundary configuration space (t, x, y, z). Left: the two

Wilson loops corresponding to the elastic dipole-dipole amplitude Ad−d
P

(s, q2). L

is the impact parameter distance between the colliding dipoles, a is the (small)

qq̄ distance in the dipoles. All qq̄ trajectories are straight lines in the eikonale

approximation Right: the Wilson loop (1→ 3→ 3′ → 4′ → 4→ 2→ 2′ → 1′ → 1) in

configuration space corresponds to the inelastic dipole-dipole amplitude Ad−d
R

(s, q2).

The Wilson lines 1 → 3 and 4 → 2 are taken as straight lines in the eikonale

approximation (see text).

will find that two-body high-energy amplitudes in gauge field theories can
be related to specific configurations of minimal surfaces.

Using the Wilson loop properties, it is now possible to formulate the
Gauge/Gravity correspondence for the elastic and inelastic scattering am-
plitude of massive colorless qq̄ states in the space of QCD color dipoles. In
Fig.7, one displayed the elastic and inelastic amplitudes of two dipoles in
configuration space, corresponding respectively to Ad−d

P (s, q2), and Ad−d
R (s, q2)

appearing in Lecture I. We will here consider the amplitudes at high en-
ergy, i.e. the problem of “Reggeization”. Indeed, at high energy, fast mov-
ing colour sources propagate along linear trajectories in coordinate space
thanks to the eikonale approximation. This important property of high en-
ergy propagation of color sources will be helpful for the evaluation of the
amplitudes through Gauge/Gravity duality.

Let us first consider the elastic dipole amplitude, i.e. the left diagram
of Fig.7. In the gauge field theory, one may write it in terms of a correlator
between two Wilson lines in configuration space, namely

Ad−d
P (s, q2) = −2is

∫

d2x⊥ eiqx⊥

〈

W1W2

〈W1〉 〈W2〉
− 1

〉

(31)
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where the Wilson loops W1,W2 correspond to the two colliding dipoles follow
classical straight lines for quark(antiquark) trajectories and close at infinite
time, as for the potential. The normalization {〈W1〉 〈W2〉} of the correlator
ensures that the amplitude vanishes when the Wilson loops get decorrelated
at large distances.

One useful technique is to formulate the duality property in Euclidean
R4 space where it takes the form of a well-defined geometrical interpretation
in terms of a minimal surface problem. Then the analytic continuation from
Euclidean to Minkowski space allows one to find the physical solution.

The Wilson line vev can be expressed as a minimal surface problem with
(approximately) two copies (for dipole size a ∼ 0) of a minimal surface whose
boundaries are straight lines in a 3-dimensional coordinate space, placed at
an impact parameter distance L and rotated one with respect to the other
by an angle θ, see Fig.7. then the amplitude will be obtained through the
analytic continuation

θ ↔ −iχ ; tEucl ↔ itMink , (32)

where χ = log s/m2 is the total rapidity interval.

In flat space, with the same boundary conditions, the minimal surface
is the helicoid. One thus realizes that the problem can be formulated as
a minimal surface problem whose mathematically well-defined solution is
a generalized helicoidal manifold embedded in curved background spaces,
such as Euclidean AdS Spaces. Unfortunately, this problem is rather dif-
ficult to solve analytically, even in flat space. It is known as the Plateau
problem, namely the determination of minimal surfaces for given boundary
conditions.

In fact, the definition of the minimal surface geometry in the conditions
of a confined AdSBH metrics (27) appears to be simpler, at least for the
leading contribution. Indeed, in the configuration of Wilson lines of Fig.6
in the context of a confining theory, the AdSBH metrics is characterized
by a singularity at z = 0 which implies a rapid growth in the z direction
towards the D3 branes, then stopped near the horizon at z0. Thus, to a
good approximation, and for large enough impact parameter (compared to
the horizon distance), the main contribution to the minimal area is from
the metrics in the bulk near z0 which is nearly flat. Hence, near z0, the
relevant minimal area can be drawn on a classical helicoid, whose analytic
expression is known. This expression contains a logarithmic singularity in
terms of kinematical variables, which turns out to be essential to generate
an imaginary part in the action afetr analytic continuation to Minkowski
space.
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After analytic continuation, one obtains

AP(s, q2) = 2is

∫

d~l e
i~q·~l−

(√
2g2

Y M
N

χ
L2

2R2
0

)

∝ s
1−

q2 R2
0√

8g2
Y M

N . (33)

which represents a Reggeized elastic amplitude, with a linear Regge trajec-
tory

α
P
(q2) = α

P
(0) − q2α′

P
≡ 1 − q2 R2

0
√

8g2
Y MN

(34)

characterized by a Pomeron intercept α
P
(0) = 1 and a Regge slope, defined

in terms of the gravity dual parameters by α′
P

=
R2

0√
8g2

Y M N
, where g2

Y MN ≡
gs is the string or ‘t Hooft coupling.

Let us now consider the dipole-dipole inelastic amplitude

(11′) + (22′) −→ (33′) + (44′) , (35)

represented in configuration space on Fig.7, right. The helicoidal geometry
remains valid due to the eikonale approximation for the “spectator quarks”,
namely the 1 → 3 and 4 → 2 Wilson lines while the “exchanged quarks”
define a trajectory drawn on the helicoid. This trajectory plays the rôle of a
dynamical time-like cut-off which takes part in the minimization procedure.
The resulting amplitude reads:

AR(s, q2) = 2i

∫

d~l e
i~q·~l−

(

2
√

2g2
Y M

N

χ
L2

R2
0

)

∝ s
−

2q2 R2
0√

2g2
Y M

N , (36)

corresponding to a linear Regge trajectory

α
R

(q2) = α
R

(0) − α′
R

q2 ≡ − q2 2R2
0

√

2g2
Y MN

(37)

characterized by a “Reggeon” intercept α
R

= 0 and a Regge slope α′
R

=
2R2

0√
2g2

Y MN
. Note that the slope α′

R
is related to the quark potential calculated

within the same AdS/CFT framework and, quite interestingly we find α′
R

=
4α′

P
, to be compared with the string result at weak coupling α′

R
= 2α′

P
.

Up to now, we restricted ourselves to a classical approximation based on
the evaluation of minimal surfaces solutions for the various Wilson loops in-
volved in the preceeding calculations. It is interesting to note that a further
step can be done by evaluating the contribution of quadratic fluctuations of
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the string worldsheet around the minimal surfaces in the case where these
surfaces are embedded in helicoids, as discussed for the confining back-
grounds. The semi classical correction comes from the fluctuations near the
minimal surface. The main outcome is that this semi classical correction
can be computed and is intimately related to the well-known “universal”
Lüscher term contribution to the interquark potential.

After some nontrivial steps, the formulae (33,36) get corrected as follows

AP(s, q2) ∝ sαP (−q2) = s1+
n⊥
96

−q2
α′
R
4 AR(s, q2) ∝ sαR(−q2) = s

n⊥
24

−q2α′
R

(38)
where n⊥ is the number of zero modes of the gravity dual theory in the
transverse-to-the-branes directions. The result is just equivalent to the
known Lüscher term in 4d found in the large-time expansion of the rect-
angular Wilson loop, except that the number of zero modes n⊥ = d− 2 can
be larger than the usual value (=2) corresponding to flat 4d space.

It is interesting to note that this theoretical feature is in qualitative
agreement with the phenomenology of soft scattering. Indeed once we fix
the α′ from the phenomenological value of the static qq̄ potential (α′ ∼
0.9GeV −2) we get for the slopes αR = α′ ∼ 0.9GeV −2 and αP = α′/4 ∼
0.23GeV −2 in good agreement with the phenomenological slopes.

A second feature is the relation between the Pomeron and Reggeon in-
tercepts. At the classical level of our approach these are respectively 1 and
0. Note that this classical contribution matches what is obtained from sim-
ple exchanges of two gluons and quark-antiquark pair, respectively, in the
t ≡ −q2 channel. The fluctuation (quantum) contributions to the Reggeon
and Pomeron are also related by the factor 4.

Adding both classical and fluctuation contributions gives an estimate
which is in qualitative agreement with the observed intercepts. Indeed, when
calculating the fluctuations around a minimal surface near the horizon in the
BH backgrounds there could be n⊥ = 7, 8 massless bosonic modes. For n⊥ =
7, 8 one gets 1.073 − 1.083 for the Pomeron and 0.3− 0.33 for the Reggeon.
This result is in agreement with the observed intercept for the “Pomeron”
and somewhat below the intercepts of around 0.5 observed for the dominant
Reggeon trajectories. The interesting output of the application of AdS/CFT
correspondence to high energy amplitudes at strong coupling is to emphasize
the relation between Reggeization and confinement, using the description
of two-body scattering amplitudes in the dual string theory.



school˙proceedings˙7 printed on April 8, 2008 25

Lecture III: Quark-Gluon Plasma/Black Hole Duality

10. QGP formation and Hydrodynamics

pre-equilibrium stage

QGP

mixed phase

hadronic gas
described
by hydrodynamics

Fig. 8. Description of QGP formation in heavy ion collisions. The kinematic land-

scape is defined by τ =
√

x2
0 − x2

1 ; η = 1
2 log x0+x1

x0−x1

; xT ={x2, x3} , where the co-

ordinates along the light-cone are x0 ± x1, the transverse ones are {x2, x3} and τ

is the proper-time, η the “space-time rapidity”.

The formation of a QGP (Quark Gluon Plasma) is expected to be re-
alized in high-energy heavy-ion collisons, e.g. at RHIC and soon at the
LHC. One of the main tools for the description of such a formation is the
relevance of relativistic hydrodynamic equations in some intermediate stage
of the collisions, see Fig.8. The problem of the hydrodynamic description
is the somewhat indirect relation with the underlying fundamental theory.
Indeed, the experimental observations seem to indicate an almost perfect-
fluid behaviour with small shear viscosity, which naturally leads to consider
a theory at strong coupling and thus within the yet unknown nonperturba-
tive regime of QCD. Moreover the QGP formation appears to be fast, which
may also point towards strong coupling properties. Another key point of
the standard description is the approximate boost-invariance of the process
in the central rapidity region, that is the well-known Bjorken flow. The goal
of the string theoretic approach is to make use of the Gauge/Gravity corre-
spondence as a way to tackle the problem of the hydrodynamic behaviour
from the fundamental theory point of view. It allows to draw quantita-
tive relations between a strongly coupled gauge field theory and a weakly
coupled string theory

More specifically, the AdS/CFT correspondence between the N =4 su-
persymmetric SU(N) gauge theory and superstrings in 10 dimensions can
be used as a calculational laboratory for this kind of approach, at least as
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a first stage before a more realistic application to QCD. The unconfined
character of the QGP gives some hope that the explicit AdS/CFT example
could be useful despite the lack of asymptotic freedom and other aspects
specific of QCD.

11. AdS/CFT and Holographic Hydrodynamics

One typical and fascinating aspect of the Gauge/Gravity duality is the
property of holography as we have seen in section 8. It states that the
amount of information contained in the boundary gauge theory (on the
brane) is the same as the one contained in the bulk string theory. In our
problem, we shall make use in a quantitative way of this property by tak-
ing advantage of one of the remarkable relations due to the “holographic
renormalization”. Using the Fefferman-Graham coordinate system for the
metric

ds2 =
gµν(z) dxµdxν + dz2

z2
.

One can write

gµν = g(0)
µν (= ηµν) + z2g(2)

µν (= 0) + z4 〈Tµν〉 + z6g(3)
µν . . .+ , (39)

where gµν is the bulk metric in 5 dimensions, ηµν , the boundary metric
in physical (3+1) Minkowski space and 〈Tµν〉 , the v.e.v. of the physical
energy-momentum tensor. The higher coefficients of the expansion over the
fifth dimension z can be obtained by the Einstein equations in the bulk
provided the boundary energy-momentum tensor fulfils the zero-trace and
continuity equations. It is important to note that the relation (39) to be
valid requires for the boundary energy-momentum tensor, by consistency

T µ
µ = 0 ; DνT µν = 0 ,

which are nothing else than the properties of a physical 4-d T µν with the
zero trace condition of a conformal theory, verified e.g. by the perfect fluid.

The interesting observation on which we shall elaborate, namely that
there is a nontrivial dual relation between a perfect fluid at rest in (3+1)
dimensions and a static 5d black hole in the bulk can be proven using
holographic renormalization. Indeed, let us consider the perfect fluid with
a stress-energy tensor equipped with diagonal elements

〈Tµν〉 ∝ g(4)
µν =









3/z4
0 = ǫ 0 0 0
0 1/z4

0 = p1 0 0
0 0 1/z4

0 = p2 0
0 0 0 1/z4

0 = p3









,
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where ǫ is the energy density and p1 = p2 = p3 = p is the pressure density.
One can resum the whole holographic expansion (39) and get the following
bulk metric in Fefferman-Graham coordinates

ds2 = − (1 − z4/z4
0)2

(1 + z4/z4
0)z2

dt2 + (1 + z4/z4
0)

dx2

z2
+

dz2

z2
. (40)

[Exercise 12.1: Recover the Energy-Momentum tensor corre-
sponding to the metric (40), by using the expansion (39)]

A change of variable z→ z̃ ≡ z/
r

1+ z4

z4
0

gives

ds2 = −1 − z̃4/z̃4
0

z̃2
dt2 +

dx2

z̃2
+

1

1 − z̃4/z̃4
0

dz̃2

z̃2
, (41)

where one recognizes the Black Hole, in fact a black brane, with a static
horizon at z̃0 in the 5th dimension.

[Exercise 12.2: prove the equivalence of the metric (40) and
(41) by the change of variable z→ z̃]

In fact there exists a one-to-one correspondence between the thermo-
dynamic properties of the Black Hole (BH) and those of the perfect fluid

(PF ), namely its temperature (TBH = ǫ
1
4 = TPF ) and entropy (SBH ∼

Area = ǫ
3
4 = SPF ).

It is in this context of a static Black hole configuration that one can
go further than the perfect fluid approximation and derive the viscosity
using the Kubo formula. Indeed, the duality properties extend to a relation
between the correlators of the energy-momentum tensor in two space-time
points at zero frequency ω = 0 and the absorption cross section σabs of a
graviton by the static BH in the bulk. One writes

σabs(ω) ∝
∫

d4x
eiωt

ω
〈[Tx2x3(x), Tx2x3(0)]〉 ⇒

η

S
≡ σabs(0)/16πG

A/4G
=

1

4π
,

(42)
where S = SBH ≡ A/4G is the famous entropy-area relation of a Black
Hole. From this relation, and putting numbers, it appears that the viscosity
is weak, much weaker than the one computed in the weak coupling regime
and eventually realizing an absolute viscosity lower bound.

12. QGP and Black Holes: From Statics to Dynamics

The previous results were obtained for static configurations, i.e. for a
thermalized QGP at rest. In order to take into account, as much as possible,
the actual kinematics of a heavy-ion collision, it is required to introduce
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Fig. 9. The curvature scalar R
2. The singular structure of the Riemann scalar at

the horizon apart from the perfect fluid case is exemplified for s = 4
3±.1 . hence,

Nonsingular Geometry (absence of naked singularity , i.e. not hidden within the BH

horizon) implies the Perfect Fluid condition in the considered family of behaviours

at large proper-time.

the proper-time expansion of the plasma. On the gravity side, it calls for
studying non-equilibrium geometries, eventually of 5d BH configurations,
which represent in itself a nontrivial and interesting issue. Dual geometries
to the standard “Bjorken flow” where recently constructed. The Bjorken
flow is the description of a boost-invariant expansion of the QGP, which
is expected to correspond to the physical situation in the central rapidity
region of the collision. In this context the questions why the QGP fluid
appears to be nearly perfect (small viscosity) and why its thermalization
time can be short have been adressed.

Let us consider the equations obeyed by a physical energy-momentum
tensor expressed in the {τ, η, x=x1 =x2} coordinate system:

T µ
µ ≡ −Tττ + 1

τ2 Tηη + 2Txx = 0

DνT
µν ≡ τ d

dτ Tττ + Tττ + 1
τ2 Tηη = 0

(43)

In a boost-invariant framework, one may consider a general family of solu-



school˙proceedings˙7 printed on April 8, 2008 29

tions of proper-time dependent, boundary energy-momentum tensors

Tµν =









f(τ) 0 0 0
0 −τ3 d

dτ f(τ)−τ2f(τ) 0 0

0 0 f(τ)+ 1
2τ d

dτ f(τ) 0
0 0 0 ...









(44)

where the function f(τ) ∝ τ−s, satisfying the positivity condition

Tµνtµtν ≥ 0 ⇒ 0 < s < 4

corresponds to an interpolation between different relevant regimes, namely

f(τ) ∝ τ− 4
3 : Perfect fluid ǫ = p1 = p2 = p3

f(τ) ∝ τ−1 : Free streaming ǫ = p2 = p3; p1 = 0
f(τ) ∝ τ−0 : “Full anisotropy” ǫ = p⊥ = −pL

Using the holographic renormalization to compute the coefficients of the
corresponding metrics in the expansion on the fifth dimension and after
resummation, it was possible to solve the dual geometry for given s at
asymptotic proper-time τ. It reveals the existence of a scaling property of
the solutions in terms of the proper-time dependent variable

v =
z

τ1/3
.

Analyzing the family of solutions as a function of s, it appears that the
only nonsingular solution for invariant scalar quantities (here the square of
the Ricci tensor R

2 = RµναβRµναβ , see Fig. 9), is obtained for s = 4/3.
Indeed, we find in Fefferman-Graham coordinates:

ds2 =
1

z2






−

(

1− e0
3

z4

τ4/3

)2

1+ e0
3

z4

τ4/3

dτ2+
(

1+ e0
3

z4

τ4/3

)

(τ2dη2+dx2)






+

dz2

z2

which is similar to the metrics of the static Black hole (40), but substituting
z0 → z4/τ1/3. This solution is the only one of the family corresponding to a
Black Hole moving away in the fifth dimension. Hence the perfect-fluid case
is singled out and the moving BH in the bulk corresponds through duality to
the expansion of the QGP taking place in the boundary. Consequently, the

BH horizon moves as zh(τ) ∝ τ
1
3 , the temperature as T (τ) ∼ 1/zh ∼ τ− 1

3 ,
and the entropy stays constant since S(τ) ∼ Area ∼ τ · 1/z3

h ∼ const. Note
that again the physical thermodynamical variables of the QGP are the same
as those one may attribute to the BH in the bulk (with the reservation
that thermodynamics of a moving BH may rise nontrivial interpretation
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problems). Hence one finds a concrete realization of the idea of a duality
between the QGP formation and a moving Black Hole.

13. Thermalization and Isotropization

There has been a lot of activity along the lines of the AdS/CFT cor-
respondence and its extensions to various geometric configurations. Dual
studies of jet quenching, quark dragging , etc... have been and are still being
performed. Sticking to the configurations corresponding to an expanding
plasma and going beyond the first order terms in proper-time, one has ob-
tained results on the viscosity, confirming the universal value (42), on the
relaxation time of the plasma and very recently on the inclusion of flavor
degrees of freedom.

Let us finally focus on the thermalization problem, which can be usefully
taken up using the Gauge/Gravity duality in the strong coupling hypothesis.
the problem is to give an explanation to the strikingly small thermalization
time required for the formation of a QGP as can be abstracted from the
experimental observations. Analyzing the stability of the expanding plasma
configuration, it has been found that performing a small deviation from the
BH metric by coupling with a scalar field and analyzing the corresponding
quasi-normal modes defining the way how the system relaxes towards its
initial state, one finds a numerically small value of the relaxation time in
units of the local temperature. Even if a definite value of this relaxation
time cannot be inferred at this stage due to scale-invariance, this result
was suggestive of a stability of the QGP in the strong coupling regime with
respect to perturbations out of equilibrium.

In order to go further, one has to deal with the problem of the QGP evo-
lution at small proper-times. The holographic renormalization program has
been pursued for the small proper-time expansion. Relaxing the selection
of the appropriate metric by requiring only the metric tensor to be a real
and single-valued function of the coordinates everywhere in the bulk, one
finds an unique solution corresponding to the “fully anisotropic case” s = 0.
In the same paper, an evaluation of the range of the isotropization time
has been proposed, by extrapolation of realistic estimates abstracted from
experiments to the supersymmetric case. The idea is to match the large
and small proper-time regimes at some value of the proper-time τiso. This
proper-time is mathematically defined as the crossing value for the branch-
point singularities of both regimes. Physically, it is expected to give an
estimate of the proper-time range during which which the medium evolves
from the full anisotropic regime (small τ) to the perfect fluid one (large τ).

In order to give an idea of the possible physical implications of this strong
coupling scheme, let us shortly reproduce the argument. Implementing
the estimated physical value of the energy density at some proper-time
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ε

τ

ε ~~ const

τ iso

ε ∼ τ −4/3

Fig. 10. Evaluation of the isotropization/thermalization time. The behaviour at

large proper-times and the one found at small ones are matched with the condition

that the branching points where the solutions become multi-valued are avoided. the

matching happens for a value τiso whose range gives an evaluation of the isotropiza-

tion time.

(e.g. ǫ(τ) = e0 τ4/3|τ=.6 ∼ 15 GeV fermi−3) one finds

τiso =

(

3N2
c

2π2e0

)3/8

∼ .3 fermi . (45)

This short isotropization time thus seems a characteristic feature of the
strong coupling scenarios. It is clear that more realistic estimates should
take into account less idealized dual models, corresponding to QCD, such as
the lack of supersymetry and the finite numbers of colors. However, the non
confined character of the QGP and the robustness of some predictions (such
as the η/S ratio) may give some confidence that this short isotropization
time could be a reasonable estimate at strong coupling.

14. Outlook

From the present rapid (and partial) survey of some of the results ob-
tained in the AdS/CFT approach to the formation and expansion of the
Quark-Gluon plasma in heavy-ion collisions, it appears that the Gauge/Gravity
correspondence is a promising way to explore some features of QCD at
strong coupling. Indeed some general features of this correspondence, re-
lating at long distances the closed and open string geometries (see Fig.3)
are expected to be valid in principle for various dual schemes and thus,
hopefully, QCD.
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In practice, the quantitative dual schemes have been more precisely elab-
orated for the specific AdS/CFT case, i.e. the gauge theory with N = 4
supersymmetries. Among the results, it gives a calculable link between
the hydrodynamic quasi-perfect fluid behaviour on the gauge theory side
with a BH geometry in the higher dimensional gravity side in and AdS
background. This relation can be extended from the static case to a dy-
namical regime reflecting (within the AdS/CFT framework) the relativistic
expansion of the corresponding quark-gluon plasma. This, and many other
applications, some of them using more complex geometries, less supersym-
metric backgrounds and examining other observables, gives hope for the
fruitful possibilities of the Gauge/Gravity approach to the QGP formation.

As an outlook, it is worth mentionning some of the possible new di-
rections of study one is led to consider. Starting with the more technical
ones, it is known that the Bjorken flow is not exactly verified in heavy-ion
collisions, since the observed distribution of particles is nearly gaussian in
rapidity and thus not reflecting exactly the boost-invariance of the Bjorken
flow. It would be interesting to investigate dual properties for non-boost
invariant flows, such as the Landau flow. On a more general ground, the
whole approach still concerns only the hydrodynamical stage of the QGP
expansion. It would be important to attack both the initial (partonic) and
final (hadronic) stages of the reaction in the same framework and thus the
problem of phase transitions during the collision. Finally, one would like
to have more realistic dual frameworks including a finite number of colors,
flavor degrees of freedom and no (or broken) supersymmetry.
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